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Abstract--After providing simple equations that should govern the behaviour of a wedge-shaped liquid 
film sandwiched between the vapour in a growing bubble and the heated wall, we discuss some questions 
that may be important for modelling heat transfer in nucleate boiling. Considered are the curvature of the 
film surface and the liquid flow in the film, for example. We further examine the consequences of some 
simplifications adopted in models from the literature. Our analysis indicates that the bubble interface is 
concave+:onvex in the region of the three-phase-Ene (TPL). The convex curvature is caused by strong 
evaporati’on at the tip of the liquid wedge under no slip condition of the liquid on the wall surface. The 
ultra-thin layer of this wedge adhering to the wall is practically motionless and hence incapable of supplying 
the quantity of liquid to the film tip necessary for evaporation to occur rapidly at a fixed TPL. Based on 
this fact, we are led to the conclusion that, under common boiling conditions, the TPL and the film interface 
are not motionless, as was assumed in very recent models of bubble growth. These models are shown in 
the present paper to be inconsistent. Namely, the liquid flow orthogonal to the heated surface is ignored 
within thr: hydrodynamics, but this flow is indeed included into the energy balance of the models. 0 1998 

Elsevier Science Ltd. All rights reserved 

1. INTRODUCTION 

To explain some features observed in colloid systems, 
such as adhesion and coagulation of particles, 
Kallmann and Willstaeter [l] proposed in 1932 a 
theory which is based upon the notion of an attractive 
and a repulsive force acting between the particles. 
According to this theory, the repulsive force has its 
origin in electrostatic charges of the interfaces and 
should decrease as exp (-m6), while the attractive 
force should change according to 6F, if 6 is the dis- 
tance between the particles, that is, the thickness of 
the liquid film sandwiched between them ; m and n are 
adjusting parameters. The condition of equal mag- 
nitudes of the two forces determines the equilibrium 
position of the particles relative to one another. 

Relatively soon after the publication of Kallmann 
and Willstaetter, in 1934, Derjaguin and his colleagues 
(for review see ref. [2]) reported on the state and 
properties of thin liquid films separating two identical, 
or different, phases. They showed that the trapped 
layer of a liquid, formed when a gas bubble is pressed 
against a solid plate immersed in the liquid, slowly 

tTe1.: 0049 711 685 6013. Fax: 0049 711 685 6140. E- 
mail : mitrovic@itt.uni-stuttgakde. 

$ The term ‘three-phase-line (TPL) is used in this paper to 
characterise the region where all the phases (liquid, vapour, 
solid) act on each ‘other, even if the vapour phase is separated 
from the wall by an adsorbed layer. 

thins and leaves under isothermal conditions a uni- 
form equilibrium film. The pressure in the film has 
been found to be different from the pressure in the 
liquid bulk, which communicates with the film. The 
difference of these pressures is termed the ‘disjoining 
pressure’, probably because of its action that opposes 
the film thinning and hence hinders the film interfaces 
from joining each other. 

Over the past two decades, the concept of the dis- 
joining pressure has been more and more involved in 
modelling the flow in thin liquid films which may 
play an important role in several branches of thermal 
systems, such as for example heat pipes. As the author 
of this paper is aware, the idea to couple the disjoining 
pressure and liquid flow in the film was introduced by 
Nerpin and Derjaguin [3] in 1955, and has meanwhile 
been refined and extended by several authors in a 
number of papers. Some twenty years later, seemingly 
for the first time, Wayner et al. [4] considered the 
heat transfer in a thin film, driven simultaneously by 
gradients of disjoining and capillary pressures. For a 
limited literature review concerning the liquid menisci 
which can be expected to form in heat pipes, the reader 
may be referred to a monograph by Faghri [5]. The 
main aim of the studies quoted there was to predict 
the heat transfer associated with evaporation in the 
region of a stationary, motionless three-phase-line 
(TPL) formed in grooves of the heating zone of heat 
pipes.$ The papers by DasGupta et al. [6], Ha and 
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NOMENCLATURE 

9 axial coordinate 
K curvature 

; 
kinematic viscosity 
radial coordinate 

P density. 

Subscripts 
I interface 
1 liquid 
TPL at TPL 
6 at film surface 
vl in n-direction 
5 in c-direction. 

Peterson [7], and Reyes and Wayner [8] contain fur- 
ther details about the subject. 

The results achieved with evaporation at stationary 
liquid menisci were apparently so promising that the 
thin-film-model has recently been applied-without 
substantial alteration-to describe the fluid flow and 
heat transfer associated with bubble growth by Lay 
and Dhir [9]. A liquid film is assumed to exist between 
the vapour in the bubble and the heated wall. In the 
model, actually, the bubble (vapour mushroom) is 
connected to the heated surface by ‘several vapour 
stems, and each stem is separated from the heated 
surface by a thin liquid film. The inner region of the 
film is considered as an adsorbed layer incapable of 
evaporation, while the outer region is the evaporating 
film ; its surface is only concave. The film interface is 
motionless, the evaporating liquid is steadily delivered 
by flow in the film radially inwards. This flow is driven 
by gradients of capillary and disjoining pressures. 

Basically the same model was developed inde- 
pendently by Hammer and Stephan [lO-131. The va- 
pour stems, assumed in the model by Lay and Dhir, 
are replaced by a continuous liquid film, sandwiched 
between the vapour in the bubble and the heated 
surface. The inner region of the film is non- 
evaporating, while its outer region is vapour-gener- 
ating. The position of the film interface is considered 
to change jumpwise radially outwards, as the bubble 
grows. Between any two subsequent jumps, the inter- 
face remains fixed in space. This necessitates the liquid 
to flow radially inwards, if evaporation at the film 
surface should take place. All transport processes 
occurring are assumed to be steady and time-inde- 
pendent. The numerical results obtained from the 
model are compared with some experimental data of 
heat transfer studies and the agreement between them 
is found to be exceedingly good. The deviations are 
reported to lie still within the experimental uncertainty 

even in nucleate boiling on a horizontal tube [14], 
where the self induced external liquid flow, non-sym- 
metry of the film underneath the growing bubble, and 
sliding of detached bubble around the tube cir- 
cumference influence the heat transfer in a complex 
manner. 

It should be noticed, however, that the validation 
of the models was-and still is-not possible at the 
microscopic level of the basic idea. Such a validation, 
important and desirable as it is, is precluded yet. Due 
to accidental nature of bubble appearance, the micro- 
scale of the system, and the rapidity of the processes 
occurring instantly, direct measurements in the region 
of the TPL are scarcely possible, and they seem to 
have not been performed up to now. For this reason, 
the authors [9-131 had to consider and to model fur- 
ther quantities and processes associated with them, 
such as, for example, the density of the actually active 
bubble formation centres on the heated surface and 
the contribution of convection to the overall heat 
transfer. Needless to say that uncertainties introduced 
by modelling of these processes overshadow to some 
extent the basic idea of film evaporation and tarnish 
its performances. 

Over two decades ago, probably for the first time, 
the author of the present paper emphasised that the 
heat transfer and energy transformation, associated 
with bubble growth, are concentrated along the TPL 
[ 151, where the rapid evaporation leads to a concave- 
convex curvature of the film surface, Fig. 1. This gen- 
erates and maintains the Laplace pressure, whose 
action, combined with the evaporation taking place 
at TPL, is considered to be responsible for the increase 
of the area across which the vapour in the bubble 
interacts with the heated wall. With regard to heat 
transfer, the TPL is seen as a circular, line-like heat 
sink, expanding at first radially outwards. After a 
certain period of time, the movement of the TPL is 
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Fig. 1. Vapour bubble growing on a heated surface. The 
detail illustrates the concave-convex curvature of the inter- 
face caused by evaporation along the TPL (‘intersection’ of 

bubble interface with the heated surface). 

reversed. This initiates the bubble detachment process, 
during which the TPL constricts until the concave 
radius of the bubble neck disappears and the bubble 
takes-off. 

The papers [!G-131 ignore the origin of the idea that 
associates the rarpid evaporation at the tip of the liquid 
wedge with bulbble growth. The evaporation at the 
TPL, discussed by the present author in a further 
paper [16], has been dismissed in ref. [lo] summarily 
with the remark? 

“The terms, such as dry spot or three-phase-line, used 
in the literature, are meaningless for the present 
model, because at no place does the vapour phase 
touch the wall”. 

Regarding this model assumption, we should 
remember that bubble growth is only one event- 
undoubtedly, :an important one-in the chain of 
events making up the bubble cycle, and the question, 
whether or not the three-phase-line does indeed exist 
can hardly be answered alone on the basis of a rela- 
tively narrow notion about heat transfer. For a satisfy- 

t “In der Literatur gebrauchliche Begriffe, wie trockener 
Fleck oder Tripellinie sind in diesem Model1 bedeutungslos, 
da an keiner Stelle die Darnpfphase mit der Wand in 
Bertihrung komrnt”, p. 7 in ref. [lo]. 

ing treatment of this question, a thorough study would 
be required, including also processes of essential 
importance for phase change. In contrast to the above 
statement, a supposition of such a line to exist seems 
realistic for several reasons. For example, if the va- 
pour actually does not at all interact with the heated 
surface, as the statement claims, the adsorption layer, 
admitted in the model, must have been established 
prior to bubble generation, and the processes of 
bubble nucleation and bubble growth are not able to 
destroy it. On the assumption that the statement is 
actually true, we are faced with serious difficulties, 
when we are to attempt to explain the nucleation 
process. In such a case, the bubble nucleus must orig- 
inate and be activated somewhere in the liquid outside 
from the adsorption layer, which means, under con- 
ditions comparable with those of homogeneous 
nucleation. Homogeneous nucleation, however, is 
known to require liquid superheats much larger than 
those observed in common boiling. 

Moreover, also the state of the layer, that might 
be adsorbed on the heated surface and separate the 
vapour in the bubble from the wall, has not been 
investigated and is hardly understood yet. Heated sur- 
faces, used in boiling experiments, are heterogeneous 
and show distinct centres regarding adsorption. 
Between such centres, a two-dimensional movement 
of molecules, a surface diffusion, is likely to occur. 
The state of these molecules is neither gaseous nor 
liquid ; their thermal agitation orthogonal to the 
heated surface is surely reduced, but their surface 
diffusion and the interaction with neighbouring mol- 
ecules can basically rupture the eventually closed 
adsorption layer, particularly at tips of roughness 
elements of nano-range. The above statement taken 
from ref. [IO] seems thus to be insufficient even for 
an oversimplified picture of the physical reality. A 
detailed analyses of adsorption, including specific fea- 
tures of the case considered, amount and surface 
activity of gases dissolved in the liquid, and topology 
and micro-relief of the heated surface, seems unavoid- 
able if the mutual interaction between vapour and 
heated wall across the area of their contact should be 
investigated a little more closely. 

Furthermore, it is worth mentioning that we, even 
on the basis of the above statement, are able to con- 
struct an ‘effective’ TPL. Since the model admits the 
existence of an adsorbed layer, which is motionless 
and incapable of evaporation, and which must be 
formed prior to bubble generation, we may consider 
this layer to be ‘rigid’, thus representing the outermost 
layer of the heated wall. The heated surface may, 
therefore, be thought as being shifted outwardly and 
fixed at the outer edge of the adsorption layer. In this 
limiting case, we certainly may speak about a three- 
phase-line as far as evaporation is concerned. 

Some motivation for the present paper lies in the 
simplifications adopted in the models [9-131, and first 
of all the ignoring of the axial flow (orthogonal to the 
heated surface) in the liquid film. These simplifications 
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are discussed in the paper and their consequences 
pathwise quantified. We further exploit relationships 
based on elementary balances and show that the inter- 
face at the TPL of a growing bubble is concave- 
convex. A comparison of the expression for the heat 
flux derived in this paper with the corresponding one 
used in the models leads us to an inconsistency of 
these models. This inconsistency concerns the axial 
flow velocity in the liquid film which is ignored within 
the film hydrodynamics, but included into the 
relationship for the heat flux. The questions raised 
concern not only the case of nucleate boiling. They 
are, at least partly, addressed also to evaporation at 
liquid menisci in general. 

a) 

BUBBLE 
(VAPOUR) 

7//i////////////////////////////////, 

-k HEATED WALL 

The remainder of the paper is organised as follows : 
in the next two sections, the hydrodynamics of a 
wedge-shaped liquid film is briefly treated; the heat 
flux is connected with the main flow properties. The 
equations derived are more or less already in use, and 
these sections are, therefore, largely a summary of 
what is known about the film flow so far adopted for 
modelling. These equations, together with the sim- 
plifications that made their derivations possible, are 
then examined in the last section. 

The following assumptions are considered to be 
confirmed : 

-single component fluid of constant physical proper- 
ties, 

-steady-state and laminar liquid flow, 
-ideally smooth and plane heated surface which is 

2//j//////,,,,,,,,,,,,,,,,,,,;,,,,,,, 

-c -I d5 t- % 
arranged horizontally. 

Almost all considerations in this article are quite 
elementary. This simple material may nevertheless be 
helpful to some reader trying to model the nucleate 
boiling. 

2. FLOW IN A WEDGE-SHAPED LIQUID FILM HEATED WALL 

2.1. The governing equations 
In this section, the constitutive equations for the 

film flow are derived from the Navier-Stokes equa- 
tions, adopting simplifications as usual in the litera- 
ture. 

Figure 2(a) illustrates a part of a wedge-shaped 
liquid film sandwiched between the vapour in a bubble 
and an ideally smooth, heated surface. Similar illus- 
trations can be taken from several sources, e.g. ref. 
[ll]. The vapour-liquid interface is assumed to be 
fixed in space, the evaporation at the film surface is 
considered to be stationary. The vapour leaving the 
interface is thus steadily replenished by liquid flow in 
the film, the flow itself is strictly viscous. 

Fig. 2. Illustrations representing the thin-film-model of heat 
transfer associated with bubble growth. (a) General 
impressions of liquid flow and evaporation at the interface 
as adopted in ref. [9-131. (b) Schematic of velocity dis- 
tribution in the cylindrical coordinates ; the axial coordinate 
q coincides with the symmetry axis of the bubble. In the 
models, the velocity y is ignored. (c) Elementary ‘flow chan- 
nel’ (shaded area) illustrating the constancy of liquid flow. 
Since Us = 0, the mass flow dti, does not change along the 
flow path. (d) The same flow channel as in (c). now located 
directly on the heated surface. Due to proximity of the 
surface, the mass flow dti, in this channel is very low, but 

the heat flux at the ‘outlet’ of the channel is very large. 

Using the cylindrical coordinate system indicated 
in Fig. 2(b), in which q is the axial coordinate, and at 
the same time the symmetry axis of the bubble, the 
steady-state momentum equations and the equation 
of continuity can be written as 
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au, au, 1 ap, 
UC% fU,& == f,- --& 

( a%, i au, ah, 
+v F+yg+T 

> 
(2) 

au, a 

where f, p, v and p are the body force, the density, the 
kinematic viscosity and the pressure, respectively. The 
index 1 refers to the liquid phase, the directions of the 
velocities uZ and u,, can be taken from the figure. 

It should be noted that the third momentum equa- 
tion does not a.ppear in the above set of equations for 
the reason of a tacitly assumed rotational symmetry. 
Such an assurnption is largely justified for a single 
bubble growing on a horizontal, perfetly smooth 
heated surface. However, for bubbles growing on a 
horizontal tube, or a vertical surface, this assumption 
must carefully be examined. 

The simplification usually made when dealing with 
thin films states that 

and the equation of continuity is written as 

UC a4 -= _- 
r at ’ or Cue = const. (5) 

This simplification is important for our further analy 
ses. For this reason we should observe that the 
inequality (4) requires loosely either 5 or au,,/aq to be 
small, but equ#ation (5) clearly states that 5 au,Jaq must 
be zero. Since 5 is arbitrary, the latter condition is 
fulfilled only at au,,/aq = 0, which results in 
u, = const = 0 for an impermeable wall surface. This 
simplifies the equations (1) and (2) considerably 
because the fluid is allowed to flow only radially. 

By a further assumption, the term ug au,/cT&j on the 
left-hand side in equation (1) is omitted, either due to 
small velocity ue itself, or its derivative.* Thus, for a 
horizontal wall arrangement (f, = -g) without body 
force in the radial direction (fe = 0), the equations (1) 
and (2) become 

ap, 2 

z = “” 
uc I a2ut a uc I 1 aur 

a+ 5 at 52 a52 (6) 

ap, 
F = -p’g. 

(7) 

The axial body force f, adopted is constant. It arises 
from the action of gravity and is different from that 
in ref. [lo], where f, - - l/q4 leads to a singularity as 
9 tends to zero. 

In equation (6), the sum of the last three terms in the 

parenthesis is zero, as follows from a differentiation of 
equation (5). Equation (6) thus takes the form 

ap, azuc 
z = VlP,a,2. 

The equations that describe the flow and pressure 
fields in the film and that have to be solved are the 
equations (7) and (8). An integration of equation (7) 
gives 

PI = -pm + (P(5) (9) 

where the function of integration (p(5) has to be deter- 
mined either from the remaining momentum equation 
(8), or elsewhere, as sketched below. 

Equation (9) shows that the simplification of 
hydrodynamic equations results in a linear change 
of the pressure p, in the film along the coordinate q. 
Along the vapour-liquid interface (II = A), the pres- 
sure distribution (p, = pla) is described by 

PI6 = - Pl& + q(l) (10) 

which, because of 6 = S(c), is a function of 5 only. 
Since the derivative ap,ja~ = (p’(5) is independent 

of n, as follows from equation (9), also equation (8) 
can immediately be integrated. The boundary 
conditions, no slip at the wall surface, n = 0 : ut = 0, 
and no shear stress at the interface, tl = 6 : au,/aq = 0, 
give then the following expression for the radial 
velocity component ut : 

1 z* 
us=vlpl -i_-“z ( > ap, 

Z’ (11) 

The direction of the velocity u, is determined by the 
sign of ap,/& since, because of n < 6, the difference 
of the terms in the brackets in equation (11) is nega- 
tive. For the flow to be directed radially inwards, 
as indicated in Fig. 2(b), the derivative ap,/i?g must 
therefore be positive. 

A remark is needed regarding the boundary con- 
dition at the film surface (r) = S) included into equa- 
tion (11). This condition roots in the Nusselt pioneer- 
ing paper on vapour condensation and has meanwhile 
been used by several authors in various physical prob- 
lems. So in the case of growing bubble, without any 
limitation or trace of doubt about its validity. In this 
case, however, the condition is neither obvious (fore- 
most at fast bubble growth) nor has it been thoroughly 
examined, but it is of an essential importance, because 
it introduces the function S(l) into the final equation 
and influences the results not only quantitatively. We 
shall return to this question further below, when dis- 
cussing the results in general. 

* Using equation (5), we get uE au,/@ = const/13 and the 
ignoring the term u, @jag can ieaci to serious errors par- 
ticularly at small 5. The errors will be larger the larger the 
distanck from the surface, because the constant Tn this 
expression do actually depend on 4. and it rises as q increases. 

2.2. Flow rate andpressure distribution 
Equation (11) allows a calculation of the flow rate 

in the cross-sectional area 27~56 of the film. Denoting 
by I the total mass flow of liquid per unit of length 
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orthogonal to the coordinate l (circumference of the 
circle, 27cQ then 

6 

l- = PI s 1 63 ap, 
u,dy = -jy,ar. 

0 
(12) 

Combining this equation with equation (9), the fol- 
lowing relationship for the function (p(l) is arrived at 

(~(5) = -3~1 
s 

;dSfC (13) 

giving 

PI = - Plgrl - 3v, 
s 

;dy+c. (14) 

Equation (14) connects the pressure p, in the film with 
the flow rate r and the film profile, represented by the 
film thickness 6. For the constant of integration to be 
determined, an apropriate boundary condition could 
be chosen. 

The above system of equations requires speci- 
fications of further quantities for a solution of the 
hydrodynamic problem. Usually, the function rp(s) is 
prescribed by 

where A,, rc and 0 denote the Hamaker constant, the 
curvature of the interface and the surface tension, 
respectively. The first term in this equation is the dis- 
joining pressure that arises from the interaction of the 
film with its substrate (wall), while the second term is 
the Laplace pressure. The curvature K and the 
exponent n depend on the film thickness 6 ; the signs 
of the terms making up the function rp(<) must be 
chosen in a way, that should lead to a pressure deriva- 
tive necessary for the required direction of film flow, 
see equation (11). Details concerning equation (15) 
can be taken from several sources, e.g. ref. [17], 
reviews [18, 191, and particularly from the monograph 
by Derjaguin et al. [2], and need therefore not be given 
here. For present purpose, only a short note regarding 
the disjoining pressure shall be made further below. 

From equations (13) and (15), the following equa- 
tion is obtained for determination of the film thickness 
6, 

LA”+Ka zz -3v, 
671 6 s 

$d<+C. (16) 

In studies dealing with flow in thin liquid films, the 
hydrostatic contribution to the pressure in the film is, 
as a rule, neglected leading at l = const. to a constant 
pressure over the whole film thickness S. The pressure 

t With polar liquids, both the structural and the molecular 
components of the disjoining pressure are observed and the 
corrkponding press&e term in equation (17) should be 
replaced by 4,/(6nZ’)+B/6*, with B depending on tem- 
perature and liquid properties [20]. 

in the film thus changes only with the radial position 
5 (contained implicitly in 6 and K) according to 

p,=pS=~~fro. 
n (17) 

As the author is aware, expressions of only this type 
for the pressure are used for modelling the processes 
associated with evaporating films. The exponent n is 
mostly chosen to be n = 3, resulting in a continuous 
decrease of the disjoining pressure approaching 
asymptotically zero as the film thickness 6 increases. 
Such a behaviour is indeed observed with very thin 
films of nonpolar liquids. However, experiments with 
polar liquids, like water, on different substrates indi- 
cate that the disjoining pressure disappears not 
asymptotically as 6 tends to infinity but rather 
abruptly at finite values of the film thickness, some- 
where between 2 nm and 8 nm, depending on tem- 
perature. Thereby a larger film thickness corresponds 
to a lower temperature (nearly 7.5 nm at 21°C less 
than 2 nm at 50°C both for water on mica [20]). This 
behaviour is attributed to the breakage of molecular 
structures formed at the liquid-wall interface which 
should be caused by thermal agitation of molecules. 
The disappearance of the disjoining pressure changes 
the evaporation conditions at the film surface essen- 
tially, because the rise of the saturation temperature 
due to the action of this pressure vanishes ; also, the 
flow in the film may become disrupted. Therefore, the 
use of equation (17) in cases of polar liquids can lead 
to erroneous resu1ts.t 

The equations given so far are sufficient to describe 
the flow in an evaporating film under the assumptions 
of the model. They are also valid for planar films, 
for which 5 + co, and the equation (5) of continuity 
reduces to i3u,/a( = 0. These equations are basically 
the same as the well-known Nusselt equations for the 
laminar film condensation. This follows immediately 
from equation (1 l), which becomes the Nusselt equa- 
tion for the velocity of the condensate if the pressure 
gradient is thought to be caused by the action of 
gravity, that is, if ap,/ag = -p,g. 

Before leaving this section, some general remarks 
seem appropriate regarding the validity of the above 
results. It should first be emphasised that the equa- 
tions derived apply to a liquid film lying on an 
extremely smooth wall surface, and their use to 
describe the film flow along a rough surface can lead 
to serious errors. In all cases, in which the surface 
roughness is comparable to, or even larger than, the 
film thickness 6, the flow in the film will be three- 
dimensional and the hydrodynamic equations, 
deduced from the greatly simplified Navier-Stokes 
equations, including also equations (15) and (17) for 
the pressure distribution, become invalid, and the 
whole theory breaks down. The roughness of technical 
surfaces used for boiling experiments usually lies 
below 0.5 pm, which means that the above theory 
might become inapplicable in precisely the cases, 
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where we would most like to apply it. Furthermore, 
the considerations rest on the tacit assumption that 
the classical hydrodynamics is unrestrictedly valid also 
for very thin liquid films. However, thin films may, 
and probably they do, behave differently with regard 
to their bulk phases due to the mutual interactions of 
the interfaces also in cases where the films separate 
two different phases [2], such as vapour in a growing 
bubble and solid wall. 

3. HEAT FLUX 

The sketched1 solution of the hydrodynamics of thin 
film needs knowledge of the flow rate I, see equation 
(16), if the fihn thickness 6 should be determined. 
The quantity r’ must thus be chosen, in general as a 
function of the film thickness, or obtained along 
another way of reasoning. In systems with change of 
phase, say evaporation at the film surface, an energy 
balance is added to the hydrodynamic equations and 
the flow rate lr is, so to say, replaced by the heat 
flux. 

In the literature, e.g. ref. [5, lo], the energy balance 
is written for a film element, sandwiched between the 
two interfaces and extended by dl along the coor- 
dinate 5, as can easily be imagined on the basis of the 
sketches in Fig. 2. With q as the local heat flux at the 
wall surface, the energy balance, combined with the 
mass balance for the same control volume, gives 

(184 

where Ah denotes the latent heat (enthalpy) of evap- 
oration. 

Implementing the flow rate I according to equation 
(12) in equation (18a), we get 

(18b) 

that is, 

4= - 

The different shapes of the expression for the heat flux 
are written down for requirements of comparisons, 
which shall be undertaken in the course of the paper. 
Equation (18a.) or (18b) describes the profile of the 
free film surface as a function of the local heat flux ; 
equations (1851-c) are based on the assumption of no 
change of the liquid temperature along the film flow. 
The liquid in the film is not allowed to absorb any 
heat and thus serves purely for heat transmission from 
the heated surface to the free film surface. The heat 
flux q within the film does, therefore, not change with 
the distance r~ from the wall. The expression given by 

equation (18b) is mostly used in the papers dealing 
with evaporating films. 

4. EXAMINATIONS OF THE FLOW AND HEAT 
FLUX MODELLING 

4.1. General 
The derivations in the previous chapters have been 

possible in the wake of several restrictions, which are 
therefore contained in the final expressions. Equation 
(5), for example, states that no axial flow in the film is 
allowed. This claim is incorporated into the expression 
for the radial velocity component uC given by equation 
(1 l), and as such, it influences both the shape of the 
film surface and heat transfer. There are therefore 
serious reasons to ask for the consequences of the 
assumptions, and to clarify whether the crucial pro- 
cesses of bubble growth are sufficiently described by 
the simple model. Some of these consequences should 
be illuminated in the following. 

4.2. Ignoring of the axial velocity component 
To form an impression as to whether the axial liquid 

flow may legitimately be ignored, we shall determine 
the velocity u4 of this flow from the complete equation 
of continuity (3) using the expression (11) for the 
velocity ug. This idea might appear questionable, inas- 
much as the expression for uC is obtained from the 
truncated equation of continuity, However, the only 
shortcoming of our working hypothesis is that ug thus 
derived will be erroneous because ut does not represent 
the actual velocity component in the film. To lend the 
idea more clarity, we may consider equation (11) to 
represent the true radial velocity component and ask 
then for the corresponding axial velocity forced by 
equation (3). 

Achieving the goal requires putting equation (11) 
into equation (3) and remembering that ap,/ar #f(q) ; 
an integration then gives 

or 

Wb) 

if the condition on the wall (v = 0 : uV = 0) shall be 
satisfied. 

The sign of the axial velocity u,, depends on the 
behaviour of the term 

as 5 varies. For ap,/a< > 0, this term is negative, and 
a decrease of its value along < would lead to a negative 
velocity u,, that is, to a liquid flow towards the wall. 
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Applied to the interface, tl = 6, expression (19b) 
becomes 

(20) 

This equation is suitable to examine the simplification 
of the equation of continuity. For this purpose, we 
calculate the radial velocity z+ = ues at the interface 
(‘I = 6) from equation (1 l), 

I 62 ap, 
UC6 = - --- 

2 plvl at (21) 

and combine it with the axial velocity u,,~ to give 

% -=- ( 2 6 as 2 a2p,iap6 . 
% 7r+Z+7 ap,jag > 

(22) 

In the ratio u,&+ the velocity uc6 appears as a mea- 
sure of the axial liquid flow. This ratio is seen to 
depend only on the film thickness 6, which means, on 
the shape of the film profile, and, in general, the ratio 
will be larger the stronger the film thickness changes 
with l. 

For a planar liquid film, we have 4 + co, and the 
first term in the brackets of equation (22) disappears, 
whence 

% ( a6 -= _ _-f--.-..-_ 
U@ at 

2 a2p,/ap 6 
3 ap,iac > . 

(23) 

If this film has a constant thickness (8 = const) 
and is driven at a constant pressure gradient 
(ap,/X = const), the ratio u,,&~ becomes zero, as 
expected. 

Required for a numerical estimation of u,,,/uca are 
the radial distributions of both the film thickness and 
pressure. Studies that provide such distributions are 
very rare to the literature. The results of numerical 
calculations performed by Stephan and Hammer [ 10, 
1 I] seem to be the only ones existing at present, as 
far as a growing bubble is concerned. The authors 
assumed a liquid film beneath the growing vapour 
bubble and used the model equations as summarised 
above; the model conditions are briefly sketched in 
the introduction of the present paper. From the results 
thus obtained and presented graphically, it may be 
followed that, in a certain region of the so-called 
‘micro-zone’ of the film close to the TPL 
(5 -tad > 0.15 pm, tad being the radius of the non- 
evaporating layer and thus determining approxi- 
mately the position of the TPL), the pressure p, in the 
film changes almost linearly with the radial position 
5, giving a2p,/ay2 z 0. In this region, equation (22) 
may be simplified as 

(24) 

In the same film region, also the film thickness 6 is, 
more or less, a linear function of 5 so that the values 
of 6 and as/at, obtained with refrigerant Rl14, evap- 
orating on a horizontal copper tube, are 6 z 0.12 pm 
and as/at z 0.519 at c--&, w 0.29 pm with 
cad = 56.3 pm (as can approximately be taken from 
Fig. 7.2 in ref. [lo], or Fig. 4 in ref. [l 11). Using these 
values, equation (24) gives 

%6 - z -0.52 
UC6 

which means that the velocities us6 and I+ are of 
the same order of magnitude ; the axial velocity u,, 
contributes thus considerably to mass transport in 
the film. The negative sign indicates that one of the 
velocities has the opposite direction with respect to 
the system coordinates. 

Equation (20) leads to an interesting relationship 
for the film thickness. With z.+ = 0, which is in accord- 
ance with the hydrodynamics of the models [9-131, it 
follows 

3,2 PI a 

s zt=const 

which must give the same pressure distribution in the 
film as equation (17). In the region of the linear pres- 
sure distribution, i?p,/ag = const and equation (25) 
yields 

const 
“=y. 

5 
(26) 

The decrease of the film thickness 6 as 5 increases, 
forced by equation (26), is clearly in contradiction to 
the basic idea of the model, see Fig. 2. 

From our analysis presented so far, we may con- 
clude that the ignoring of the axial liquid flow in the 
film is not justifiable and equation (11) for the radial 
liquid velocity is essentially erroneous. Considerations 
in the next section, however, will show that the axial 
liquid flow, though ignored within the film hydro- 
dynamics, is accounted for in the energy balance, and 
the velocity u,,& given by equation (19) is, in fact, con- 
tained in the expression for the heat flux. 

4.3. Mass flow, heat flux andfilm proj?le 
In the following, we will derive a simple relationship 

that connects the heat flux, liquid velocity, and shape 
of the film using elementary balances for matter and 
energy. On the basis of this relationship we will then 
examine the corresponding expression taken from the 
literature and discuss the curvature of the film surface 
at the TPL. 

(a) Mass flow and heat flux 

To keep the further considerations more illustra- 
tive, we first wish to define an elementary ‘flow chan- 
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nel’, Fig. 2(c). Such a channel is formed when the 
shaded area, located at an arbitrary distance q above 
the wall surface, io rotated round the axis q. The chan- 
nel thus formed extends from the bubble surface 
towards the infinit.y ; its cross-sectional area at an arbi- 
trary radial position t is 27~5 dn. If the corresponding 
fluid velocity is Q, the mass flow in the channel is 
obtained from 

dJ& = 2np,5ut dr/. (27) 

According to our key assumption, the axial velocity 
does not exist, u,, = 0, and, by equation (5) 
tuc = const. Consequently, the mass Sow dti, does 
not change along the flow path, the liquid flow enter- 
ing the channel remains constant (as if the channel 
walls were impemreable) until the interface is reached. 
While passing the interface, the liquid evaporates, 
absorbing the heat d& ; at a constant latent heat of 
evaporation, the heat flow d& changes congruently 
with the mass flow dti,. Since the velocity uy increases 
with q, the same flow channel, located at a larger 
distance from the wall, conducts more liquid and thus 
requires a larger heat flow for evaporation. The 
reverse is true, when q decreases. This inter- 
relationship will prove later to be decisive for a judge- 
ment about the curvature of the film surface at the 
TPL. 

With the aid of our flow channel, we can very simply 
obtain an expression for the heat flux qa on the inter- 
face. Since u9 = 0, the energy balance de6 = dM,Ah 
gives immediately, 

which, with us6 from equation (21) becomes 

1 6*Ah ap, a6 ~__ 46=-i y, atag. 

The heat fluxes qa given by equation (28a) is related to 
the same area as the heat flux q according to equation 
(18a), namely 27~4 dl. These equations, however, differ 
from each other. Already the first term on the right- 
hand side of equation (18~) is twice as large as the 
heat flux qs given 13~ equation (28b). This is unexpected 
because both the equations are based on the assump- 
tion of no axial flow in the film and no change of the 
liquid temperature along the liquid flow. In this case, 
as mentioned abomve, the liquid not evaporating within 
the control volume serves purely for heat transmission 
from the heated wall to the film surface. The question 
why the equations disagree is important for us and 
shall be treated next. 

An answer to 1:his question is easily provided by a 
closer inspection of the energy balance that had led 
to equation (18b). The energy balance in question is 
written for a tilm element sandwiched between the wall 
and the film surface. At constant physical properties, it 
gives 

(29) 

In papers dealing with film flow, the radial velocity uc 
in equation (29) is replaced according to equation (1 l), 
the integration performed, and the derivation with 
respect to 5: conducted. In this way, equation (18b) is 
arrived at. Within the limits of the model assumptions, 
however, this is not the correct way because the 
boundary of integration, S(t), depends on the same 
parameter 5 as the function to be integrated, and the 
derivative of the integral generally is not the same as 
the derivative of the function obtained by the inte- 
gration. Otherwise, the basic assumption of the model 
is blasted, as shown immediately. 

To treat equation (29) correctly, we have to apply 
the Leibnitz rule, giving 

4 = $++),,,$ +~$(Sui)dn). (30) 

The integral in equation (30) arises from the depen- 
dence of the film thickness 6 = S(t) on the parameter 
r and represents a convective contribution to mass 
flow (and to heat flux). Its physical interpretation is 
obvious. 

In order to perform the integration in equation (30) 
the function a(<u,)/al needs to be specified, for which, 
within our analysis, two ways are generally possible. 
One of these can be based on the requirement of a 
strict fulfilment of the model assumption, by which 
no axial flow in the film does exist. Then, the derivative 
a(&)/iX is zero, as stated by equation (5) and equa- 
tion (30) reduces simply to equation (28a). Clearly, 
along this line of reasoning, the model is kept consist- 
ent, and its conditions are nowhere violated. 

On the other hand, we can leave the line of the 
model, ignoring the requirement by equation (5) and 
replace a(&)/@ according to the complete equation 
of continuity, equation (3). Then, equation (30) 
delivers 

This expression for the heat flux is generally valid for 
two-dimensional films. It contains not only the radial 
but also the axial liquid velocity and, depending on 
these velocities, a variety of particular cases can easily 
be constructed. For example, if we insert equations 
(20) and (21) for the velocities u,,* and ued into equation 
(31), we get one of the equations (18). This example 
clearly shows that, notwithstanding the fact that the 
axial liquid flow is ignored within the hydrodynamics 
of the model, the heat flux calculated by equation (18) 
still depends on the axial flow velocity u,,+ Obviously, 
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we are led to a model inconsistency,t which, as the 
author is aware, has not been mentioned in earlier 
treatments. 

This shortcoming of the models used in the litera- 
ture answers immediately our question stated above 
in connection with the heat balances. Namely, de- 
noting by Aq the difference of the heat fluxes q and qa 

given by equations (3 l), or one of equations (18), and 
(28a), we get 

Aq = q-96 

= -p,r+Ah 

(32) 

whereby equation (20) has been incorporated into the 
latter form of this expression. As equation (32) tells, 
the difference Aq is a convective contribution to heat 
transfer due to axial liquid flow, and it disappears 
only at the requirement of equation (29, which is the 
ultimate condition for vanishing of z+. 

(b) Film profile 

The film thickness 6 is one of the key quantities in 
the relationships treated so far. It must therefore be 
possible to obtain, at least qualitatively, some features 
of this quantity on the basis of these relationships. In 
connection with evaporation during bubble growth, 
the change of the film thickness at the film tip is of 
particular interest for us. Thus, we should try next to 
arrive at clear and unequivocal conclusions regarding 
the film shape at the TPL, starting from equation 
(28a). 

As noted above, equation (28a) is derived in accord- 
ance with the basic model assumption. The mass flow 
dti,;, included in this expression, depends on the axial 
position q of the ‘flow channel’, and a larger value of 

rl corresponds to a larger mass flow requiring a larger 
heat flow for liquid to evaporate. Now, if the channel 
is located on the heated surface, as illustrated in Fig. 
2(d), the liquid flow in this channel is expected to 
be very small because of the no slip condition on the 
wall surface. Consequently, the heat needed for 
evaporation of this flow will correspondingly be 
reduced. 

This causality of the processes, obvious and without 
any objections within the framework of the hydro- 
dynamics of the models, seems to contradict a simple 
reasoning. Namely, at the outlet of the channel placed 
on the wall, the liquid-vapour interface ‘joins’ the 
heated surface, and we may expect in this region a 
very large heat flux qa. A large heat flux corresponds 
to a high evaporation rate, which in the case of a 
motionless interface (and TPL) requires a large liquid 
velocity in the channel. However, due to wall prox- 
imity, the channel placed on the wall can hardly pro- 
vide enough liquid to the motionless film tip necessary 
to maintain the large heat flux. 

There is obviously some conflict between our 
reasoning and the model, something, which needs to 
be explained. A meaningful explanation should 
involve the film profile as a crucially interesting quan- 
tity. In order to simply understand and clarify the 
mutual interactions between the heat flux, fluid flow, 
and film profile, the following questions should guide 
our analysis : 

-How does the system organise and adjust itself near 
the TPL? 

-What happens at the film tip? Does the curvature 
change there unexpectedly? 

-1s the TPL indeed motionless, or does it expand 
along the heated wall? 

To examine these questions, we write equation (28a) 
as 

t The hydrodynamic model inconsistency has further 
consequences. Namely, since equation (18b) accounts for the 
axial liquid flow, the temperature 9 in the film does not 
change linearly with the wall distance and the use of the 
classical Fourier relationship for calculating the temperature 
at the film surface and the heat transfer coefficient can result 
in considerable errors. The heat flux 4 in the film is generally 
not constant but changes according to 

as 
q = -I,- +p,c,,u,9 

a4 
where 1 is the thermal conductivity and cP the specific heat 
capacity of the liquid. However, the most important effect of 
the axial liquid flow lies possibly in the radial temperature 
change which makes the validity of equation (18b) seriously 
questionable. 

On the contrary, if we-in agreement with literature- 
assume equation (18b) to represent the true heat flux, then 
the actual velocity components were given by equations (11) 
and (19a). In this case, the continuity equation (3) were 
satisfied, but not the momentum equations. Clearly, seen on 
the basis of such an assumption, we were not able to form a 
set of consistent equations that govern the transport pro- 
cesses in the film. 

which shows that the slope &S/at of the film profile 
depends both on the physical properties (p,, Ah) and 
process parameters (qa, u&. An increase in the velocity 
us6, for example, causes a smaller slope of the film 
surface if the other quantities are kept unchanged. On 
the contrary, at smaller values of uc6, the film profile 
becomes steeper at a given heat flux. Obviously, in the 
region of the TPL, where the radial liquid velocity us6 
is practically zero, the slope as/at is very large, even 
at a low heat flux. In the limiting case ucd + 0 (or 
qa + co), we get &!S/ag + co, and the dynamic (micro) 
contact angle at the film tip tends to 42. 

Farther away from the TPL, the film thickness 6 
increases, resulting in a larger velocity us6 and possibly 
in a smaller heat flux q8. Therefore, in the light of 
equation (33), the derivative S/al is expected to 
reduce as 5 increases. The other limiting value for the 
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slope is thus, asj8?t; -+ 0, giving a film surface parallel 
to the wall surface (see Fig. 1). 

On the basis of equation (33), the following 
conclusion seems: natural : due to the negligibly small 
radial velocity uc6 in the ultra-thin liquid layer 
immediately adjacent to the heated wall, the evap- 
oration at the TPL generates a convex curvature of 
the interface at the tip of the liquid wedge. This is 
likely to occur already at a low heat flux, as was 
suggested by the author earlier [15, 161. 

Also Straub [;!I] was recently led to similar results 
on the basis of his explanations of heat transfer and 
evaporation at the TPL. The experiments by Wayner 
et al. [22, 231 seem to support the above conclusions. 
These authors studied evaporation at liquid menisci, 
formed on a horizontal plate-heater and reported, 
among other things, about the bending down of the 
film profile. The term ‘bending down’ characterises 
the change of the curvature of the film surface in the 
region of the TPL when heated in comparison to the 
curvature without heating ; this finding is qualitatively 
in accordance with equation (33). 

The above reasoning and conclusions deduced from 
equation (33) are beyond any doubt, notwithstanding 
the fact that the energy balance, upon which this equa- 
tion is based, is incorrect so far as it does not account 
for any axial liquid flow. This lack, however, can 
simply be eliminated if the derivative %/al is obtained 
from equation (.3 l), thus, 

The term u,,&~ does by no means alter our 
conclusions. 

Some of the questions stated above can now be 
answered by emphasising that a strong change of the 
curvature of the film tip is unavoidable if at the 
motionless TPL a high heat flux should be established. 
This answer seems to be the most probable one within 
the model assumptions. However, in a system with 
more freedom, a one less restricted by our assump- 
tions, other states and processes, not mentioned so 
far, are possible. The system could, for example, gen- 
erate a liquid llow along the interface towards the 
TPL. For such a flow to occur by the classical Mar- 
angoni convection in single-component systems, the 
temperature of the film surface is required to decrease 
as the TPL is approaching. At first glance, this require- 
ment might sound inconceivable. However, a decrease 
of the temperature while approaching the TPL may 
indeed be expected because of the convex curvature 
at the film tip. Convex curvature requires a lower 
equilibrium temperature thus leading to a lower actual 
temperature in that region. Another possibility is a 
continuous movement of the TPL radially outwards. 
This notion is b’est supported by the fact that the liquid 
layer adjacent 1.0 the heated surface is immobile, and 
the TPL will, therefore, ‘slide’ towards the liquid bulk 
as the evaporation proceeds and the bubble grows. 

Aio the influence of physical properties (p,, Ah) 
appearing explicitly in equations (33) and (34) on the 
film profile is of interest for several reasons and should 
shortly attract our attention. These equations indicate 
a stronger change of as/at, resulting in a steeper film 
profile, as the pressure increases. Near the thermo- 
dynamical critical point of the fluid, we may expect a 
specific situation, because p,Ah --f 0, and as/at + co, 
no matter how low the heat flux qs > 0 may be. This 
causality might be of some importance with regard to 
burn-out heat flux, which reduces in the range of 
higher pressure as the pressure increases, approaching 
zero at the thermodynamical critical point. This fact 
could also give some indications how to understand 
the formation of jet-like two-phase structures 
observed, when boiling occurs in the near-critical fluid 
region. In connection with the film shape at the 
motionless TPL, we should further emphasise that- 
even at an extremely large heat flux-the maximum 
micro-contact angle does not exceed 7c/2 (at aa/ 
a< -+ co). This follows immediately from equation 
(33). Obviously, the models, which consider the TPL 
to be motionless, do not allow contact angles larger 
than 7r/2. Such models do, therefore, not indicate the 
mode of transition or film boiling to exist. 

Before closing the curvature considerations, we 
should remark that our results are valid within the 
continuum fluid domain. The considerations suffice, 
therefore, to enter the region of the TPL, but not to 
reach the TPL itself, the treatment of which belongs 
to the domain of molecular dynamics. 

4.4. Liquidjow in the wedge 
The direction of liquid flow in the film, as assumed 

in the models [9-131, is unquestionable as long as the 
free film surface is actually motionless and the axial 
velocity is zero. Such a physical picture, however, can 
hardly be expected in the case of a growing vapour 
bubble, where the whole process is strongly time 
dependent and the interface not motionless. Due to 
rapid evaporation at the TPL, the curvature of the film 
surface changes both in time and space. Depending 
on heat flux, the interface assumes a more or less 
pronounced convex curvature at the film tip giving 
rise to a corresponding Laplace pressure, Fig. 1. If, as 
an example, at the tip of a two hundred nanometers 
thick liquid film, in which the disjoining pressure 
might reduce almost to zero, a radius of the convex 
curvature of r = 100 nm is assumed (concave cur- 
vature is put at zero), a Laplace pressure of o/r = lo5 
N m-’ for a fluid having a surface tension of c = lo-* 
N/m (typical value for refrigerants) is expected. This 
pressure is acting upon the film tip and is likely to 
push the liquid radially outwards during the main 
period of bubble growth, Fig. 3(a). The pushing of 
the liquid does in no way hinder the evaporation. In 
contrast, a convex curved interface requires a larger 
vapour pressure, thus facilitating the evaporation. The 
co-operative action of the Laplace pressure and evap- 
oration at the TPL results in a continuously ‘sliding’ 



1782 J. MITROVIC 

4 BUBBLE (VAPOUR) 
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Fig. 3. Direction of flow in the liquid wedge established along 
the rim of a growing vapour bubble. (a) Cooperative action 
of evaporation at the TPL and Laplace pressure causes a 
pushing of the liquid radially outwards during the main 
growth period. (b) The TPL and the liquid rush radially 
inwards during the bubble detachment process. The bubble 
takes off, when the concave radius of the interface at the film 

tip becomes zero. 

of the TPL along the heated surface and, during the 
first period of bubble growth, there seems to occur no 
processes whose action could stop this sliding ; thus, 
any ad hoc assumption of an inwards flow in the liquid 
film seems unjustifiable. The physical picture just 
sketched is not altered by a possible adsorption on 
the heated surface, as discussed elsewhere [24]. 
After a certain period of time, the outwards sliding 
of TPL becomes interrupted, then started again, but 
now in the reverse direction, Fig. 3(b). This instant 
fluxes the time origin of bubble detachment process. 

The sliding of the TPL is governed by the processes 
of heat transfer and fluid flow in the very narrow 
region around the TPL. The most important con- 
tribution to this heat transfer stems probably from the 
heated wall. As discussed in ref. [16], due to the strong 
temperature drop of the heated surface at the position 
of the TPL and the faster propagation of temperature 

waves in the solid wall than in the liquid, the heat, 
accumulated (prior to bubble generation) in the thin 
liquid layer adhering to the heated surface, can now 
become re-absorbed by the wall and then, by conduc- 
tion, reach the heat sink acting along the TPL. The 
possibility of a reversal of the heat flow at a particular 
distance from the TPL depends on transport proper- 
ties of both liquid and heated wall as well as on the 
wall superheating. 

The sliding velocity of the TPL could roughly be 
estimated on a supposition of a motionless liquid in 
the film. In such a case, the sliding of the TPL would 
be caused by evaporation only and its velocity would 
approximately be the same as the velocity of the liquid 
at the fixed TPL. Thus, with uTPL = uc6 equation (28a) 
gives 

48 
UTPL = p,Ahas/ag 

This equation is invalid for &?/a~ + co because the 
elementary area of the wall surface transferring the 
heat qa would reduce to a line (TPL) and the heat 
balance, upon which the equation (35) rests, would 
lose its physical sense. At &S/at -+ co, the velocity uTpL 
could roughly be estimated from 

U -4r 
TPL - p,Ah 

where qr is the heat flux at the vapour-liquid interface 
in the vicinity of the TPL, and not at the wall surface. 
Note that qa and q1 in equations (35) and (36) must 
account for the momentum change due to evaporation 
and the action of the Laplace pressure if the equations 
should approximately give the actual velocity values. 
In other words, the velocity uTPL has to be calculated 
from the complete momentum equation. 

To obtain an estimate of the velocity uTPL by equa- 
tion (36) and to illustrate the sliding of the TPL, we 
chooseq, = 107Wm-2,p, = 103kgmp3,andAh = lo5 
J kg-‘, giving uTpL = 0.1 m SK’. Assuming now a radial 
shifting of TPL during the bubble growth to be 100 
,um (radial distance reported by Hammer [lo] is 
approximately lad x 60 pm), the time period required 
for the TPL to move along this distance would be 
AZ = 10e3 s. which is an acceptable order of mag- 
nitude in comparison with typical times of bubble 
growth. Note that larger values of uTPL and smaller 
ones of AZ are expected at larger pressures because 
the term p,Ah decreases as the pressure rises. 

4.5. Boundary condition at the film surface 
We turn now to consider the boundary condition 

(r~ = 6 : auc/&l = 0) at the film surface chosen for 
determination of the radial velocity ue. This condition, 
however suggestive as it is, seems unlikely to establish 
itself in reality. Particularly in the case of a fast grow- 
ing bubble, the stress field at the interface changes 
very rapidly with time. In addition, it is a complex 
function of several parameters, including gradient of 
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surface tension and momentum change (reactive 
force) due to evaporation. For the condition to be 
fulfilled, the Newton shear stress, v,p, &,/a~, must be 
zero at q = 6, at each instant. This requires the sum 
of the components ((excepting the Newton term) of the 
stress tensor at the film surface to disappear, when 
projected on the plane q = cons& during the whole 
period of bubble growth. 

To illustrate why the boundary condition seems 
improbable also at steady-states, we tirst consider the 
velocity profile in the film at an arbitrary radial dis- 
tance {, Fig. 2(b) and (c). At a distance r) < 6, the 
velocity of a thin liquid layer (‘flow channel’) at q + dr) 
is larger than at q -dq, that is &Q/&I # 0, and the 
shear stress does exist. At q = const, the derivative 
dz+/aq changes along the flow path, but it still remains 
different from zero. In order to get &+/as = 0 and to 
satisfy the boundary condition, the liquid layer at 
rl+ dq must be decelerated, while at q - dq accelerated. 
This, however, would change the mass flow in the 
channel, something, which is impossible within the 
framework of the model. 

Similar conclusions follows immediately from equa- 
tion (5). Applied to the film surface, this equation 
becomes 

Normally, uea/r # 0 and &?/at # co. The derivative 
&,/&I at the film surface is, therefore, different from 
zero. Only in the limiting case as/at -+ cc (region of 
the TPL, as discusised above), du,/arl would be zero. 
In such a case, however, the physical model would 
lose its original concept of representing a liquid film 
whose thickness continuously changes at a finite rate. 

Another was to examine the boundary condition 
can be taken from a paper of Lord Rayleigh [25] 
published in 1890. While discussing the equilibrium 
conditions at the TPL (Young-equation), Rayleigh 
noted that a free surface of a wedge-shaped liquid film 
(actually the rim of a sessile droplet) can only be at 
equilibrium if a suitably defined potential along it is 
constant. Otherwise the gradient of the potential 
would give rise to a net force between adjacent 
elements and causl: them to move. As to the suitably 
defined potential in our case, it suffices to note that 
the first term in equation (17) stems even from a poten- 
tial at the film surface. Since the pressure along the 
film surface is not constant, but changes as 
ap,/8 = (ap,/a~)/(~%j/a~), the potential changes too, 
resulting in a stress in the plane rl = const. 

In the face of this analysis, we may conclude that 
a+/@ is not generally expected to disappear at the 
interface, and another boundary condition should be 
asked for. As an alternative, one could specify the 
velocity at the surface, r) = 6 : ut = ut6, in which case, 
the expression 

(38) 

for the radial velocity is obtained, instead of equation 
(11). Note that equation (38) does not make the model 
more complex in comparison to equation (11) and the 
boundary condition, upon which it rests, is unques- 
tionably always satisfied. 

4.6. Some additional remarks 
(a) Liquid viscosity and nucleate boiling 

The foregoing considerations have shown that the 
motionless TPL and the inwards liquid flow are 
improbable. Even the reverse seems true during the 
main period of bubble growth; both the TPL and the 
liquid in the film move radially outwards. However, 
since the movement of the TPL can be thought to be 
stopped and the liquid to flow correspondingly, as 
adopted in the models [9-131, one could indeed expect 
from the models in question to give an adequate 
description of heat transfer. The results obtained 
along this line of reasoning would not be satisfying. 
The main reason for our doubt lies in the action of 
liquid viscosity. For a fixed interface, the liquid vis- 
cosity would dominate the flow in the liquid wedge 
and, therefore, largely govern the bubble growth and 
boiling heat transfer. This is by far not the case. 

The influence of the viscosity on nucleate boiling 
heat transfer seems to be a very weak one, if any, as 
far as the commonly viscous liquids are concerned. In 
fact, the most heat transfer correlations, based on 
experiments alone, do not suggest the liquid viscosity 
to belong to the family of decisive parameters. The 
weak effect of the viscosity, reported in some cor- 
relations, e.g. ref. [26], might be ascribed to liquid 
convection in bubble-free regions of heated surfaces 
and to external flow originated by bubble growth and 
detachment. Certain difficulty arises only with 
refrigerants inasmuch as a processing of numerous 
data, obtained with these fluids, indicates the liquid 
viscosity to facilitate the boiling heat transfer [27]. 
This is in contradiction to equations for nucleate boil- 
ing that root in models of single phase heat transfer 
and that mostly adopt the influence of the viscosity 
from these models, see, for example, discussion in ref. 
[28]. However, both the correlation for heat transfer 
with refrigerants and the model equations are irrel- 
evant for the present considerations, not only because 
of their mutual contradictions with regard to liquid 
viscosity. 

The results of a recent experimental work by Amm- 
erman et al. [29] are of more importantance for our 
purpose. The authors found with FC-72 as working 
fluid the transport of latent heat to be the dominating 
mechanism in the developed boiling region. Now, the 
parameters that govern the latent heat transport are 
practically those of bubble growth and detachment, 
and the relationships describing these processes in the 
thermally controlled growth region do not contain 
liquid viscosity. This interchange clearly support our 
notion upon the viscosity effect. However, in spite of 
this fact, it would probably be too simple to follow 
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from these observations that the influence of liquid 
viscosity on nucleate boiling is entirely negligible. 
Because the physical properties of saturated liquids 
are linked to each other via temperature, the liquid 
viscosity might implicitly affect the bubble processes. 
In addition, there are some model expressions for 
bubble growth in the inertia controlled growth region 
that explicitly show a weak viscosity effect, see e.g. 
ref. [28]. 

(b) Surface roughness and sliding of the TPL 

The processes taking place at the TPL are essential 
for bubble growth and latent heat transfer. Conse- 
quently, the length of the TPL must have some sig- 
nificance in the whole process of nucleate boiling, and 
a larger length of this line is expected to improve 
the heat transfer. Since the actual length of the TPL 
depends on micro-relief of the heated surface, the sur- 
face roughness influences the boiling process not only 
by bubble nucleation and bubble density, but also by 
the length of the TPL. 

In connection with the roughness effect, the move- 
ment of the TPL should also be mentioned. The sliding 
of the TPL is accompanied by instantaneous, jump- 
wise change of its length. Namely, as the TPL slides 
continuously in the plane of the heated surface, it 
climbs up and surmounts the roughness elements thus 
becoming suddenly (jump-wise) longer. This rises the 
evaporation rate, resulting in an emission of pressure 
waves into the vapour space. The properties of the 
waves are largely determined by the properties of the 
ridges that emit them. The waves, not dissipated 
within the vapour phase, reach and interact with the 
bubble surface, most probably in a ‘soft’ way. The 
term soft should mean that the waves become not 
reflected from, but absorbed at the interface due to 
vapour condensation, The waves serve therefore as a 
means for transport of matter and heat at the sound 
speed in the vapour phase. 

It should be noted that each micro-element of the 
surface roughness will emit, so to speak, its ‘indi- 
vidual’ wave. Corresponding to the large variety of 
these elements, a broad spectrum of the pressure 
waves may be expected. While travelling through the 
vapour, the waves interact with one another leading to 
a corresponding change of their properties responsible 
for heat transport. To quantify this transport requires 
a detailed analysis of generation and mutual inter- 
action of the waves, including also the surface relief, 
which seems hardly possible at the time. 

(c) Momentum pressure 

The counteracting process regarding the rapid evap- 
oration at the TPL in a given system seems to be the 
evaporation itself, originating a liquid acceleration 
by bubble growth. Such an acceleration roots in the 
momentum change of the evaporating liquid, which 
results in a dynamical pressure jump at the vapour- 
liquid interface by approximately Ap(q,/A/z)2/(pvp,) z 

(dW/pv> as it follows from a momentum balance 
for a plane, motionless interface. This pressure jump 
is a sensitive function of system pressure ; it can reach 
relatively large values, particularly in the range of 
low vapour density and must be surmounted by a 
corresponding rise of the interfacial temperature. 

It might be illustrative to estimate the dynamical 
pressure jump. If we, for example, take again the 
above used values of q, and Ah and assume the vapour 
density to be pv = 1 kg me3, we obtain (qi/Ah)‘/ 
pv = 0.1 bar. Our illustration indicates that the 
dynamical effects associated with large evaporation 
rate at the TPL during bubble growth should be 
accounted for in a detailed analysis of heat transfer. 

5. CONCLUSIONS 

Recent models of heat transfer associated with bub- 
ble growth are resting on the notion of a liquid film 
that should form beneath the growing bubble. The 
inner part of the film is considered as an adsorption 
layer, incapable of evaporation, while the outer part 
of the film is vapour-generating. The film surface is 
only concave curved and is assumed to be either fixed 
in space [9], or to move jumpwise radially outwards 
[l&13], as the bubble grows. This movement results 
in an increase of the area covered with the non-evap- 
orating film. In order to make the evaporation poss- 
ible, in both models the liquid in the evaporating part 
of the film is assumed to flow radially inwards at 
steady-state. 

In the present paper, we analysed some assumptions 
adopted in the models and showed that there is a 
great deal of diversity ‘around and within’ the growing 
bubble. For example, the liquid velocity in the evap- 
orating film which is orthogonal to the heated surface 
is ignored within the hydrodynamics of the models. 
Our analysis indicates that the neglecting of this vel- 
ocity component can result in too large errors when 
calculating the film properties. Furthermore, the 
boundary condition at the film surface (no shear 
stress) adopted in the models for determination of the 
liquid flow in the film has been found in this paper to 
be unlikely, particularly in the case of a fast growing 
bubble ; such a condition is impossible within the basic 
model assumptions. In addition, the models are shown 
to be inconsistent since the axial velocity (orthogonal 
to heated wall) in the film is ignored within the film 
hydrodynamics, but at the same time included into the 
energy balance. This gives a non-linear distribution of 
the temperature in the film which is also in con- 
tradiction to the basic model. There are no physical 
reasons that could justify these facts. As the author is 
aware, the inconsistencies have not been realised in 
earlier treatments. 

Further considerations in the present paper based 
on elementary balances for matter and energy indicate 
that the bubble interface in the region, where the three 
phases (vapour, liquid, solid) meet and act on each 
other, the region of the three-phase-line (TPL), is con- 
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cave-convex. This is because of the rapid evaporation 
at the tip of the liquid wedge formed along the rim of 
the growing bubble. The ultra-thin liquid layer of 
this wedge that is immediately adjacent to the heated 
surface is practically motionless due to no slip bound- 
ary condition on the wall surface. This layer is, there- 
fore, incapable of supplying the quantity of liquid 
to the wedge tip n’acessary for evaporation to occur 
rapidly at a fixed TPL. Consequently, the TPL is not 
fixed; it moves ‘towards’ the liquid bulk during the 
main period of bubble growth. This movement is gov- 
erned by the co-operative action of evaporation at the 
TPL and the Laplace pressure that pushes the liquid 
in the wedge radia.lly outwards. The inwards move- 
ment of the liquid occurs during the constriction of 
the area enveloped by the TPL which precedes the 
bubble detachment. 

It should be stnessed that our considerations and 
the results we arrived at are resting on very simple 
relationships and the more complete balance-equa- 
tions, once solved, will show at which places the con- 
clusions are incomplete or invalid. 
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